DEVOIR DE SYNTHESE Nº2

ème Math

Exercice n°1

Dans le plan orienté, on considère un carré ABCD de centre O et tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi].$

On désigne par I et J les milieux respectifs des segments [AB] et [AD].

- 1/ On note par S similitude directe qui transforme D en O et C en I.
 - a) Déterminer le rapport et l'angle de S.
 - b) Trouver une construction géométrique du centre K de S.
- 2/ a) Préciser les images par 5 des droites (BD) et (BC).
 - b)Déterminer les images par 5 des points B et A.
 - c) Montrer que K est le barycentre des points (B, 1) et (J, 4).
- 3/ Soit R la rotation de centre O et d'angle $\frac{\pi}{2}$ et h = R o S.
 - a) Déterminer h (B).
 - b) Donner la nature et les éléments caractéristiques de h.
 - c) On note L = K * B. Montrer que le triangle OKL est rectangle et isocèle.
- 4/ Soit f la similitude indirecte telle que f(D) = O et f(C) = I.
 - a) Montrer que $f = S_{(OI)}$ o S et déterminer f(B).
 - b) Donner alors la forme réduite de f.

Exercice n°2

Dans le plan complexe P rapporté au repère orthonormé direct (O, \vec{u}, \vec{v}) d'unité graphique 5 cm, on donne les points A, B et C d'affixes respectives: i; $\sqrt{2}$; $\sqrt{2}$ + i. On appelle I, J et K les milieux respectifs des segments [OB]; [AC] et [BC] et s la similitude directe qui transforme A en I et O en B.

- 1/a) Déterminer le rapport et l'angle de s.
 - b) Vérifier que s est l'application qui à un point M d'affixe z associe le point M' d'affixe z' = $\frac{\sqrt{2}}{2}$ i z + $\sqrt{2}$.
 - c) En déduire l'affixe ω du centre Ω de s. Représenter Ω dans le plan P.
 - d) Quelle est l'image par s du rectangle AOBC?
- 2) On considère la transformation $s^2 = s \circ s$.
 - a) Quelles sont les images des points O, B et A par s^2 ?
 - b) Montrer que s² est une homothétie dont on précisera le centre et le rapport.
 - c) En déduire que les droites (OC) , (BJ) et (AK) sont concourantes.

Problème

Partie A

On considère pour tout entier naturel non nul n la fonction f_n définie sur]-1, + ∞ [par f_n (x) = $\frac{e^x}{(1+x)^n}$.

On désigne par \mathcal{E}_n sa courbe représentative dans un plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1/a) Etudier les variations de f_n et dresser son tableau de variation.
 - b) Exprimer $f_n'(x)$ en fonction de $f_n(x)$ et $f_{n+1}(x)$.
- 2/ a) Etudier les positions relatives de \mathscr{C}_n et \mathscr{C}_{n+1} .
 - b) Construire les courbes \mathscr{C}_1 et \mathscr{C}_2 dans le même repère.
 - c) Calculer l'aire de la partie \mathscr{D} délimitée par \mathscr{C}_1 , \mathscr{C}_2 et les droites d'équations x=0 et x=1.
- 3/ Pour tout entier naturel non nul n, on pose:

$$I_n = \int_0^1 f_n(x) dx$$

- a) Montrer que la suite (I_n) est décroissante et qu'elle est convergente.
- b) Montrer que pour tout $n \in IN^*$, on a: $I_n = n I_{n+1} 1 + \frac{e}{2^n}$ (utiliser 1/b).
- c) En déduire $\lim_{n \to +\infty} I_n$.

Partie B

Soit F la fonction définie sur [1,+ ∞ [par F(x) = $\int_0^{2\text{Log}x} \frac{e^{\dagger}}{1+\dagger} dt$.

- 1/ a) Vérifier que pour tout $t \in [0, +\infty[$, on a $e^t \ge 1 + t$ et que $F(x) \ge 2 \text{ Log } x$.
 - b) En déduire $\lim_{x \to \infty} F(x)$.
- 2/ a) Montrer que F est dérivable sur [1 , $+\infty$ [et calculer F '(x).
 - b) En déduire que pour tout $x \in [1, +\infty[$ on a:

$$F(x) = \int_{1}^{x} \frac{2t}{1+2 \log t} dt$$
.

3/ a) Montrer que pour tout $x \in [2, +\infty[$ on a:

$$F(x) \geq \int_{\frac{x}{2}}^{x} \frac{2t}{1+2 \log t} dt.$$

- b) En utilisant le théorème de la moyenne, montrer qu'il existe un réel $c \in \left[\frac{x}{2}, x\right]$ telle que $F(x) \geq \frac{xc}{1+2 \ \text{Log} \, c}$.
- c) En déduire que $\lim_{x\to +\infty} \frac{F(x)}{x} = +\infty$.
- 4/ On désigne par Γ la courbe représentative de F dans un repère orthonormé.
 - a) Dresser le tableau de variation de F.
 - b) Donner une équation de la demi tangente Δ à Γ au point d'abscisse 1.
 - c) Tracer Δ et donner l'allure de Γ .